Entropy-based nonlinear viscosity for Fourier approximations of conservation laws
نویسندگان
چکیده
An Entropy-based nonlinear viscosity for approximating conservation laws using Fourier expansions is proposed. The viscosity is proportional to the entropy residual of the equation (or system) and thus preserves the spectral accuracy of the method. To cite this article: J.-L. Guermond, R. Pasquetti, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Résumé Une technique de viscosité entropique pour l’approximation de Fourier des lois de conservation. On propose une technique de viscosité non-linéaire entropique pour approcher les lois de conservation par une méthode spectrale Fourier. La viscosité est proportionelle au résidu de l’équation d’évolution de l’entropie et est ainsi spectralement petite quand la solution est régulière. Pour citer cet article : J.-L. Guermond, R. Pasquetti, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Version française abrégée On présente dans cette Note une technique pour résoudre les lois de conservation de la forme (1) par une méthode spectrale Fourier, cf. (3). La solution pouvant développer des chocs on introduit un terme de viscosité non-linéaire proportionel au résidu de l’équation de conservation de l’entropie (4), (5). Les performances de la méthode sont d’abord validées pour l’équation de Burgers et pour un problème à flux non convexe (6). Les résultats obtenus sont présentés dans la Fig. 1. On considère ensuite le système des équations d’Euler (7), que l’on complète par des termes de viscosité similaires à ceux du système de Navier–Stokes, cf. (8), (9). Comme dans le cas scalaire, les viscosité et diffusivité artificielles sont proportionnelles au résidu de l’équation d’évolution de l’entropie, cf. (10) à (14). La technique est illustrée sur les tubes à choc de Lax, de Shu–Osher et de Woodward–Colella. Les résultats sont montrés dans la Fig. 2. E-mail addresses: [email protected] (J.-L. Guermond), [email protected] (R. Pasquetti). 1 Permanent address: LIMSI (CNRS-UPR 3251), BP 133, 91403 Orsay cedex, France. 1631-073X/$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2008.05.013 802 J.-L. Guermond, R. Pasquetti / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 801–806 Contrairement à d’autres approches plus standards, nous n’utilisons pas les variables entropiques, cf., par exemple, [1] ou [5]. Les viscosité et diffusivité artificielles sont directement construites sur l’équation d’évolution de l’entropie.
منابع مشابه
Total Variation and Error Estimates for Spectral Viscosity Approximations
We study the behavior of spectral viscosity approximations to nonlinear scalar conservation laws. We show how the spectral viscosity method compromises between the total-variation bounded viscosity approximations— which are restricted to first-order accuracy—and the spectrally accurate, yet unstable, Fourier method. In particular, we prove that the spectral viscosity method is Ll-stable and hen...
متن کاملEntropy viscosity method for nonlinear conservation laws
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entr...
متن کاملEntropy Stable Approximations of Nonlinear Conservation Laws
A central problem in computational fluid dynamics is the development of the numerical approximations for nonlinear hyperbolic conservation laws and related time-dependent problems governed by additional dissipative and dispersive forcing terms. Entropy stability serves as an essential guideline in the design of new computationally reliable numerical schemes. My dissertation research involves a ...
متن کاملPerfect Derivatives, Conservative Differences and Entropy Stable Computation of Hyperbolic Conservation Laws
Entropy stability plays an important role in the dynamics of nonlinear systems of hyperbolic conservation laws and related convection-diffusion equations. Here we are concerned with the corresponding question of numerical entropy stability — we review a general framework for designing entropy stable approximations of such systems. The framework, developed in [28, 29] and in an ongoing series of...
متن کاملSpectral Viscosity
We study the behavior of spectral viscosity approximations to nonlinear scalar conservation laws. We show how the spectral viscosity method compromises between the total-variation bounded viscosity approximations { which are restricted to rst-order accuracy, and the spectrally accurate { yet unstable, Fourier method. In particular, we prove that the spectral viscosity method is L 1-stable and h...
متن کاملAFRL-AFOSR-VA-TR-2015-0337 Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity
Our goal is to develop robust numerical methods for solving mathematical models of nonlinear phenomena such as nonlinearconservation laws, advection-dominated multi-phase flows, and free-boundary problems, where shocks, fronts, and contactdiscontinuities are driving features and pose significant difficulties for traditional numerical methods. We have discovered thattime-dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008